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Wavelet Harmonic Balance

N. Soveiko and M. Nakhla

Abstract—This letter introduces a new approach to steady
state analysis of nonlinear microwave circuits under periodic
excitation. The new method issimilar to thewell known technique
of Harmonic Balance, but uses wavelets as basis functions instead
of Fourier series. Use of wavelets allows significant increase in
sparsity of the equation matrices and consequently decrease in
CPU cost and stor age requirements, while retaining accuracy and
convergence of the traditional approach. The new method scales
linearly with the size of the problem and is well suited for large
scale smulations.

Index Terms—Harmonic balance, nonlinear circuits, steady
state analysis, wavelets.

I. INTRODUCTION

TEADY state analysis of nonlinear circuits represents one
f the most computationally challenging problems in mi-
crowave circuit design. The traditional approach of Harmonic
Balance [1] assumes obtaining the solution = of the nonlinear
MNA equation [2]
Ci+Gr+ flx)+u=0 @
that satisfies periodical boundary conditions
x(t+7)=2a(t), ult+71)=ul?). 2
Solution is obtained by expanding (1) in Fourier basis that is
naturally periodic and thus enforces the boundary conditions.
Thisresultsin a system of nonlinear algebraic equationsin fre-
guency domain
P(X)=(CD+ @)X +F(X)+U =0,
X =Tz, 2=TX,U="Tu ©)
where T" and 7" are matrices associated with the forward and

inverse Fourier transform. This system is solved by Newton’'s
iterations. Jacobian for (3) can be written in the following form:

a® fr } @

J(X) =

0D+ G+T
oX TeT [83:1

Because Fourier basis functions (sines and cosines) have full
support on an interval, matrices 7" and 7" are essentially dense
which results in appearance of structurally dense blocks in
the Jacobian, non withstanding the fact that in HB simulators
Fourier Transform iscomputed implicitly, using FFT algorithm.
These dense blocks are associated with nonlinear elements
in the circuit and their size is proportional to the number of
harmonics to be computed. The over-al fairly high density of
the Jacobian results in high computational expense (CPU time
and memory requirements) incurred in the Harmonic Balance
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Fig. 1. Cascode amplifier circuit.

simulators, particularly for highly nonlinear and multitone
circuits.

Different techniques have been previously proposed to im-
prove Harmonic Balance (e.g., [3]-{6]). However, to the best of
our knowledge, little, if any, research have been done in feasi-
bility and advantages of expansion in bases other than Fourier
series. Possibility of awavelet formulation for nonlinear steady-
state analysis was mentioned in [ 7], but the matter was not pur-
sued any further.

We propose acompletely new method, which we call Wavel et
Harmonic Balance, and in which we use wavelets [8] as the
expansion basis.

Il. WAVELET FORMULATION

Full details of the wavelet formulation are undoubtedly be-
yond thelimits of thisletter and should be a subject of aseparate
paper. Here we can only briefly outline the major points of it.

Because of the general form matrix formulation, (3) and (4)
till hold, with minor differences arising from the construction
of the matricesin (3). Matrix D is the projection of the deriva-
tive operator onto subspace spanned by the expansion basis. In
traditional Harmonic Balance, this matrix is diagonal in real
Schur form. With wavelets, this matrix contains connection co-
efficientswhich define projection of the derivative operator onto
wavelet space in nonstandard operator form [9]

D =TRT (5)
= (ol =), gyott)) ©

where (t) isthe scaling function associated with given wavel et,
matrix R has elements r; on it's i-th diagonal and matrices 7’
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Fig. 2. Singletoneinput simulation results for the cascode amplifier in Fig. 1.

Two tone input, 900 + 910 MHz
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Fig. 3. Two tone input simulation results for the cascode amplifier in Fig. 1.

and T are associated with the forward and inverse wavel et trans-
form. For each type of wavel ets, connection coefficients are ob-
tained as a solution of linear system of equations [10]

M

1 2
Tm = 2 Tom + 5 ; a/?k—l(Tan—Qk—l—l + T?rn,—l—?k—l) (7)

where a; are autocorrelation coefficients of the low pass
Quadrature Mirror Filters (QMF) associated with chosen
(bi-)orthogonal wavelet basis

M—i—1
a; =2 Y hmhmy, i=1...,M—1. (8

m=0

Because we can choose wavel ets that have local support, the
QMFs are essentialy finite response filters and connection co-
efficients in (6) are nonzero only for small values of ¢. Trans-
form matrices T" and T are constructed from QMF coefficients
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Fig. 4. Jacobian sparsity patterns.

and thus are also sparse and bandlimited [11]. This means that
in wavelet basis matrix D is sparse and bandlimited. Periodic
boundary conditions are enforced by using periodized wavel ets
[12] which preserve bandwidith of the matrices D, 7" and 7" and,
consequently, that of the Jacobian (4).

1. NUMERICAL RESULTS

The proposed Wavelet Harmonic Balance method was used
to simulate cascode amplifier circuit in Fig. 1. Second order or-
thogonal Daubechieswaveletswere used for the wavel et formu-
lation. Results of the single tone 900 Mhz input power sweep
simulations are shown in Fig. 2. As one can seeg, results of the
simulation using wavel et formul ation arein excellent agreement
with the traditional Harmonic Balance. Size of the Jacobian in
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this example was 775 x 775 with 16470 nonzero entries for
Fourier series 800 x 800 and with 10827 nonzero entries for
wavel ets. In thisexampl e both methods exhibited essentially the
same convergence and computational cost.

Second exampleinvolvesthe same circuit with two toneinput
signals of the same power, with frequencies of 900 and 910
MHz. Purpose of this experiment is to demonstrate speed and
accuracy of the proposed method on computations of the third
order in-band intermodulation products at 920 and 930 MHz.
Simulation results are shown in Fig. 3 and are in very good cor-
respondence with each other. Size of the Jacobian in this ex-
ample was 9975 x 9975 with 2415525 nonzero entries (27.7
MBytes) for Fourier series and 15000 x 15000 with 203 397
nonzero entries (2.49 MBytes) for wavelets. Average time for
one LU decomposition (on a 900 MHz SUN Blade-1000 work-
station) of the Jacobian after symmetric approximate minimum
degree preordering was 105 seconds for Fourier seriesversus 11
seconds for wavelets. Both methods also exhibited essentially
the same convergence. Jacobian sparsity patternsfor both cases
are shown in Fig. 4.

IV. CONCLUDING REMARKS

We have researched the possibility of using wavelets asbasis
functions for expansion in Harmonic Balance-like method of
simulation steady state response of nonlinear circuits under pe-
riodic excitations. This research resulted in the introduction of
completely new technique for such simulations. We call this
technique Wavelet Harmonic Balance. The new techniqueis as
accurate as traditional Harmonic Balance, but has a potential of
being much faster, particularly for multitone simulations.
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